

ISOLATION, STRUCTURAL ELUCIDATION, AND POTENTIAL ANTIDIABETIC ACTIVITY OF α -GALLOYLPUNICALAGIN FROM THE LEAVES OF *Terminalia phaeocarpa*

José Hugo de S. Gomes^{1*}, Rodrigo M. de Pádua¹, Steyner de F. Cortês², Fernão C. Braga¹

josehugoufmg@gmail.com

1-Faculdade de Farmácia, UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil. 2-Instituto de Ciências Biológicas, UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil.

Diabetes is a highly prevalent chronic disease, affecting approximately 830 million people worldwide¹. Despite therapeutic advances, current treatments remain of limited effectiveness, and bioactive natural products have emerged as an important source of therapeutic innovation. Species of *Terminalia* have different ethnomedicinal uses, and the potential antidiabetic activity of some species has been demonstrated in various experimental models. *T. phaeocarpa* is an endemic tree distributed across the Brazilian Cerrado and Atlantic Forest biomes, whose chemical composition and biological activities have never been investigated. The present study aimed to perform a phytochemical investigation of *T. phaeocarpa* leaves and to assess their potential antidiabetic activity through *in vitro* inhibition of the α -glucosidase enzyme². An ethanolic extract was prepared by percolation with 96 °GL EtOH, followed by fractionation between immiscible solvents. The extract induced significant α -glucosidase inhibition ($pIC_{50} = 5.46 \pm 0.05$), as did the derived ethyl acetate (FrEtOAc; $pIC_{50} = 5.79 \pm 0.11$) and methanol/water (7:3) (FrMeOH:H₂O; $pIC_{50} = 5.74 \pm 0.05$) fractions. UHPLC-ESI-MS/MS analysis of the extract, FrEtOAc, and FrMeOH:H₂O led to the identification of 38 phenolic compounds, including tannins, flavonoids, and organic acids. The obtained chromatograms revealed a major peak in FrEtOAc. To isolate this constituent, FrEtOAc was fractionated over a Sephadex LH-20 column, yielding a tannin-enriched fraction in MeOH/acetone (1:1). Subsequent preparative RP-HPLC purification afforded a single ellagitannin. Both the tannin-enriched fraction ($pIC_{50} = 1.61 \pm 0.04$) and the isolated ellagitannin ($IC_{50} = 1.56 \pm 0.93 \mu M$; $pIC_{50} = 5.95 \pm 0.27$) were evaluated for *in vitro* α -glucosidase inhibition, confirming that the biological activity was concentrated in these samples. The chemical structure of the ellagitannin was elucidated by UHPLC-MS together with extensive ¹H and ¹³C NMR analyses, including one- and two-dimensional experiments (HSQC, HMBC, and NOESY). The spectroscopic data allowed its unequivocal identification as 1- α -O-galloylpunicalagin, a compound not previously reported in *T. phaeocarpa*. This is the first report on the biological activity and chemical composition of *T. phaeocarpa*. Based on previous evidence of polyphenol activity in diabetes, it is feasible to suppose that other polyphenols identified in the species may also contribute to the observed biological effects.

Keywords: *Terminalia phaeocarpa*, ¹H NMR, α -galloylpunicalagin, *in vitro*, α -glucosidase, IC_{50}

¹ WHO - World Health Organization. Diagnosis and management of type 2 diabetes (HeartsD). Geneva, Switzerland: 2025. Disponível em <<https://apps.who.int/iris/handle/10665/331710>>>

² Gomes JHS et al., 2021. Hypoglycemic and enzyme inhibitory effects of *Terminalia phaeocarpa*. *J. Ethnopharmacol.*

